Daily Distance Traveled Is Associated with Greater Brain Size in Primates

PNG_SCI_Articles - Vidal-Cordasco-et-al.-2020-Daily-Distance-Traveled-Is-Associated-with-Greater

Explanations for the brain size increments through primate and, particularly, human evolution are numerous. Commonly, these hypotheses rely on the influence that behavioral and ecological variables have on brain size in extant primates, such as diet quality, social group size, or home range (HR) area. However, HR area does not reflect the time spent moving. As such, it has not been properly addressed whether the effort involved in movement could have affected brain size evolution in primates. This study aimed to test the influence of daily movement on primates’ brain sizes, controlling for these other behavioral and ecological factors. We used a large comparative dataset of extant primate species and phylogenetic comparative methods. Our results show a significant correlation between daily movement and brain mass, which is not explained by the influence of diet, social group size, HR, or body mass. Hence, from an evolutionary timescale, a longer daily movement distance is not a constraining factor for the energetic investment in a larger brain. On the contrary, increased mobility could have contributed to brain mass incrementations through evolution.

Testing the inhibitory cascade model in a recent human sample

The Inhibitory Cascade Model was proposed by Kavanagh and colleagues (Nature, 449, 427–433 [2007]) after their experimental studies on the dental development of murine rodent species. These authors described an activator–inhibitor mechanism that has been employed to predict evolutionary size patterns of mammalian teeth, including hominins. In the present study, we measured the crown area of the three lower permanent molars (M1, M2, and M3) of a large recent modern human sample of male and female individuals from a collection preserved at the Institute of Anthropology of the University of Coimbra (Portugal). The main aim of the present study is to test if the size molar patterns observed in this human sample fits the Inhibitory Cascade Model. For this purpose, we first measured the crown area in those individuals preserving the complete molar series. Measurements were taken in photographs, using a planimeter and following well-tested techniques used in previous works. We then plot the M3/M1 and M2/M1 size ratios. Our results show that the premise of the Inhibitory Cascade Model, according to which the average of the crown area of M2 is approximately one-third of the sum of the crown area of the three molars, is fulfilled. However, our results also show that the individual values of a significant number of males and females are out of the 95% confidence interval predicted by the Inhibitory Cascade Model in rodents. As a result, the present analyses suggest that neither the sample of males, nor that of females, nor the pooled sample fits the Inhibitory Cascade Model. It is important to notice that, although this model has been successfully tested in a large number of current human populations, to the best of our knowledge this is the first study in which individual data have been obtained in a recent human population rather than using the average of the sample. Our results evince that, at the individual level, some factors not yet known could interfere with this model masking the modulation of the size on the molar series in modern humans. We suggest that the considerable delay in the onset of M3 formation in modern humans could be related to a weakening of the possible activation/inhibition process for this tooth. Finally, and in support of our conclusions, we have checked that the absolute and relative size of M1 and M2 is not related to the M3 agenesis in our sample. In line with other studies in primates, our results do not support the Inhibitory Cascade Model in a recent human sample. Further research is needed to better understand the genetic basis of this mechanism and its relationship to the phenotype. In this way, we may be able to find out which evolutionary changes may be responsible for the deviations observed in many species, including Homo sapiens.

Indicators of sexual dimorphism in Homo antecessor permanent canines

One of the main concerns of paleoanthropologists is to make a correct interpretation of the variability observed in the fossil record. However, the current knowledge about sexual dimorphism in the human lineage comes mainly from the study of modern human, Neanderthal and pre-Neanderthal populations, whereas information available about the intrapopulation variability of the groups that preceded these taxa is still ambiguous. In this preliminary study, Homo antecessor dental sample was assessed with the aim of trying to evaluate the degree of variability of their permanent canines` dental tissue proportions. Microtomographic techniques were here employed in order to measure and compare the crown volumes and surface areas of their enamel caps and dentine-pulp complexes. Then, the Pearson`s Coefficient of Variation and the Euclidean Distance were assessed to evaluate of intrapopulation variability of Gran Dolina TD6.2 dental sample. The values obtained were also compared with those of the dental samples from Sima de los Huesos site (Spain), the Neanderthal site of Krapina (Croatia), as well as from a broad forensic collection of known sex. Our results showed a marked intrapopulation variability in the dental tissues measurements of the canines of the individuals H1 and H3 from this site. This variability may be interpreted as an indicator of sexual dimorphism. If this is the case, H1 may be considered as a male individual, whereas H3 would be a female. Future discoveries of new fossils in the level TD6.2 of Gran Dolina site might help to confirm or refute this hypothesis.

Testing the inhibitory cascade model in the Middle Pleistocene Sima de los Huesos (Sierra de Atapuerca, Spain) hominin sample

The Middle Pleistocene Sima de los Huesos (SH) site has yielded more than 7.500 human fossil remains belonging to a minimum of 29 individuals. Most of these individuals preserve either the complete mandibular molar series or at least the first (M1) and second (M2) molars. The inhibitory cascade mathematical model was proposed by Kavanagh et al. (Nature, 449, 427–433 [2007]) after their experimental studies on the dental development of murine rodent species. The activator–inhibitor mechanism of this model has shown its ability for predicting evolutionary size patterns of mammalian teeth, including hominins. The main aim of this study is to test whether the size molar patterns observed in the SH hominins fit the inhibitory cascade model. With this purpose, we have measured the crown area of all SH molars in photographs, using a planimeter and following techniques used and well contrasted in previous works. Following one of the premises of the inhibitory cascade model, we expect that the central tooth (M2 in our case) of a triplet would have the average size of the two outer teeth. The absolute difference between the observed and the expected values for the M2s ranges from 0.23 to 8.46 mm2 in the SH sample. In terms of percentage, the difference ranges between 0.25% and 10.34%, although in most cases, it is below 5%. The plot of the estimated M3/M1 and M2/M1 size ratios obtained in the SH hominins occupies a small area of the theoretical developmental morphospace obtained for rodent species. In addition, the majority of the values are placed near the theoretical line which defines the relationship predicted by the inhibitory cascade model in these mammals. The values of the slope and intercept of the reduced major regression obtained for the SH individuals do not differ significantly from those obtained for rodent species, thus confirming that the size of the molars of the SH hominins fits the inhibitory cascade model. We discuss these results in terms of dental development. Despite the promising results in the SH sample, we draw the attention to the fact that most Early Pleistocene Homo specimens exhibit a pattern (M1 < M2 > M3), which is outside the expected theoretical morphospace predicted by the inhibitory cascade model. The shift from the M1 < M2 < M3 size relationship observed in early hominins (including H. habilis) to the M1 > M2 > M3 size relationship, which is predominant in modern humans, includes sequences that depart from predictions of the inhibitory cascade model. Additional studies are required to understand these deviations.

Inner morphological and metric characterization of the molar remains from the Montmaurin-La Niche mandible: The Neanderthal signal

Here, we present a metric and morphological study of the molar remains from the Montmaurin-La Niche mandible by means of microcomputed tomography. According to the last analysis, based on the combination of geomorphological and paleontological data, the level bearing this human mandible probably corresponds to the marine isotope stages (MIS) 7. These data place the Montmaurin-La Niche in a chronologically intermediate position between the Neanderthals and the Middle Pleistocene fossils (e.g., Sima de los Huesos, la Caune de l’Arago). A recent study has revealed that while the mandible is more closely related to the Early and Middle Pleistocene African and Eurasian populations, the morphology of the outer enamel surfaces of its molars is typical of the Neanderthal linage. The data presented here are in line with this finding because the morphology of the enamel-dentine junction of the molars is similar to that of Neanderthals, whereas the absolute and relative enamel thickness values (2D and 3D) are closer to those exhibited by some Early Pleistocene hominins. Moreover, the pulp cavity morphology and proportions are in concordance with the Neanderthal populations. Our results strengthen the hypothesis that the settlement of Europe could be the result of several migrations, at different times, originated from a common source population. Thus, the variability in the European Middle Pleistocene populations (e.g., Montmaurin, Sima de los Huesos, Arago, Mala Balanica) could indicate different migrations at different times and/or population fragmentation, without excluding the possible hybridization between residents and new settlers.

Sexual dimorphism of the enamel and dentine dimensions of the permanent canines of the Middle Pleistocene hominins from Sima de los Huesos (Burgos, Spain)

Sexual dimorphism is an important component of the total variation seen in populations and plays a key role in taxonomic debates. In this study, microtomographic (microcomputed tomography) techniques were applied to a sample of hominin teeth from the Sima de los Huesos site (Spain). Dental tissue proportions of the permanent canines were assessed to characterize the pattern and degree of sexual dimorphism within this population. In addition, the possible similarities and differences with the Homo neanderthalensis remains from Krapina (Croatia) and with a recent modern human sample were evaluated. A combination of classical statistical approaches with more novel techniques allowed us not only to ratify the sex allocation of the individuals previously assigned in the literature but also to estimate the sex of the youngest individuals, which were not assessed in previous studies. Likewise, the sexes of certain extensively worn canines and isolated pieces were estimated. As a result, the sex ratio observed in our dental sample from the Sima de los Huesos population is 5:9 (Nm:Nf). In general terms, both Sima de los Huesos and Krapina dental samples have a degree of sexual dimorphism in their permanent canine tissue proportions that does not surpass that of modern humans. The marked dimorphic root volume of Sima de los Huesos mandibular canines is the exception, which surpasses the modern human mean, although it falls within the 95% confidence interval. Therefore, our results do not support that dental tissue proportions of the European Middle Pleistocene populations were more dimorphic than in modern humans. However, the differences in canine tissue proportions are great enough to allow sex estimation with a high degree of confidence.

Crown tissue proportions and enamel thickness distribution in the Middle Pleistocene hominin molars from Sima de los Huesos (SH) population (Atapuerca, Spain)

Dental enamel thickness, topography, growth and development vary among hominins. In Homo, the thickness of dental enamel in most Pleistocene hominins display variations from thick to hyper-thick, while Neanderthals exhibit proportionally thinner enamel. The origin of the thin trait remains unclear. In this context, the Middle Pleistocene human dental assemblage from Atapuerca-Sima de los Huesos (SH) provides a unique opportunity to trace the evolution of enamel thickness in European hominins. In this study, we aim to test the hypothesis if the SH molar sample approximates the Neanderthal condition for enamel thickness and/or distribution. This study includes 626 molars, both original and comparative data. We analysed the molar inner structural organization of the original collections (n = 124), belonging to SH(n = 72) and modern humans from Spanish origin (n = 52). We compared the SH estimates to those of extinct and extant populations of the genus Homo from African, Asian and European origin (estimates extracted from literature n = 502). The comparative sample included maxillary and mandibular molars belonging to H. erectus, East and North African Homo, European Middle Pleistocene Homo, Neanderthals, and fossil and extant H. sapiens. We used high-resolution images to investigate the endostructural configuration of SH molars (tissue proportions, enamel thickness and distribution). The SH molars exhibit on average thick absolute and relative enamel in 2D and 3D estimates, both in the complete crown and the lateral enamel. This primitive condition is shared with the majority of extinct and extant hominin sample, except for Neanderthals and some isolated specimens. On the contrary, the SH molar enamel distribution maps reveal a distribution pattern similar to the Neanderthal signal (with thicker enamel on the lingual cusps and more peripherally distributed), compared to H. antecessor and modern humans. Due to the phylogenetic position of the SH population, the thick condition in molars could represent the persistence of the plesiomorphic condition in this group. Still, more data is needed on other Early and Middle Pleistocene populations to fully understand the evolutionary meaning of this trait.

Ectopic maxillary third molar in Early Pleistocene Homo antecessor from Atapuerca-Gran Dolina site (Burgos, Spain)

Objectives Here we describe the case of an ectopic maxillary third molar (M3), preventing the eruption of the M2, in the individual H3 of the hominin hypodigm of level TD6.2 of the Early Pleistocene site of Gran Dolina (Sierra de Atapuerca, Spain). Materials and Methods The fossil remains from the TD6.2 level of the Gran Dolina site (about 170 specimens) are assigned to Homo antecessor. Different geochronological methods place these hominins in the oxygen isotopic stage 21, between 0.8 and 0.85 million years ago (Ma). The immature individual H3 is represented by an almost complete midface (ATD6-69), preserving various teeth in situ. We used high-resolution microtomograhy (mCT) to investigate the abnormal position of the left M3, virtually reconstruct M2, and M3 as well as assessing the development stage of these. Finally, we compare this case with extinct and extant populations. Results Based on the identified signs, we suggest that individual H3 suffered from a unilateral impaction of the M2 as a result of the ectopic position of the developing M3. Discussion We conclude that the most likely etiology for the ectopic position of the M3 is the lack of space in the maxilla. We discuss possible contributing factors, such as morphometric aspects of the maxilla and the early mineralization of the M3, to support the M2 impaction. Finally, due to the early age at death of this individual we did not identify any secondary lesion associated with the M2 impaction.

Short and long period growth markers of enamel formation distinguish European Pleistocene hominins

Characterizing dental development in fossil hominins is important for distinguishing between them and for establishing where and when the slow overall growth and development of modern humans appeared. Dental development of australopiths and early Homo was faster than modern humans. The Atapuerca fossils (Spain) fill a barely known gap in human evolution, spanning ~1.2 to ~0.4 million years (Ma), during which H. sapiens and Neandertal dental growth characteristics may have developed. We report here perikymata counts, perikymata distributions and periodicities of all teeth belonging to the TE9 level of Sima del Elefante, level TD6.2 of Gran Dolina (H. antecessor) and Sima de los Huesos. We found some components of dental growth in the Atapuerca fossils resembled more recent H. sapiens. Mosaic evolution of perikymata counts and distribution generate three distinct clusters: H. antecessor, Sima de los Huesos and H. sapiens.