Dental remains of the Middle Pleistocene hominins from the Sima de los Huesos site (Sierra de Atapuerca, Spain): Mandibular dentition

The Middle Pleistocene site of the Sima de los Huesos (Sierra de Atapuerca, northern Spain) has yielded a considerable number of human fossils during the period 1984–2020. Among them, up to 314 mandibular teeth have been identified. In this second paper dedicated to the dentition we present the description of the eight dental classes of the mandible following the Arizona State University Dental Anthropology System (ASUDAS) classification. In addition, we show the mean mesiodistal and buccolingual diameters obtained in these teeth compared to those of Neanderthals and a modern human sample. The morphology of both the anterior and posterior teeth suggests a close relationship of the Sima de los Huesos hominins with the populations of the second half of the Middle Pleistocene of Europe and the Near East, as well as with the so-called classic Neanderthals of Europe. The combination of dental traits in these populations is characteristic and diagnostic and suggests grouping the Sima de los Huesos hominins with the other paleodemes in a Neanderthal clade. The dental evidence of the Sima de los Huesos hominins is key to propose a complex model for the settlement of Europe during the Middle Pleistocene. In this period, different migrations of human groups probably coming from Southwest Asia, replacements, prolonged isolations, as well as hybridization and introgression processes would have contributed to the diversity of hominins in Europe.

Dental remains of the Middle Pleistocene hominins from the Sima de los Huesos site (Sierra de Atapuerca, Spain): Maxillary dentition

The Middle Pleistocene site of the Sima de los Huesos (Sierra de Atapuerca, northern Spain) has yielded a considerable number of human fossils during the period 1984–2020. Among them, up to 253 maxillary teeth have been recovered. In this article, we present the description of the eight dental classes of the maxilla following the Arizona State University Dental Anthropology System classification. In addition, we present the mean mesiodistal and buccolingual diameters of these teeth compared to those of Neanderthals and a modern human sample. The morphology of both the anterior and posterior teeth suggests a close relationship of the Sima de los Huesos hominins with the populations of the second half of the Middle Pleistocene of Europe and the Near East, as well as with the so-called classic Neanderthals of Europe. Features with a recognizable taxonomic signal allow grouping the Sima de los Huesos hominins with different paleodemes into a Neanderthal clade. The dental evidence of the Sima de los Huesos hominins is key to suggest a complex model for the settlement of Europe during the Middle Pleistocene. During this period, different migrations of human groups probably coming from Southwest Asia, replacements, prolonged isolations, as well as hybridization and introgression processes would have contributed to the diversity of hominins in Europe.

Similarities and differences in the dental tissue proportions of the deciduous and permanent canines of Early and Middle Pleistocene human populations

The two- and three-dimensional assessment of dental tissues has become routine in human taxonomic studies throughout the years. Nonetheless, most of our knowledge of the variability of the enamel and dentine dimensions of the human evolutionary lineage comes from the study of permanent dentition, and particularly from molars. This leads to a biased view of the variability of these features. Due to their early formation and rapid development, the deciduous teeth allow more simplified inferences regarding the processes involved in the dental tissue development of each group. Therefore, their study could be very valuable in dental palaeohistology. In this research, we have explored the dental tissue proportions of the deciduous canines belonging to some human samples of the Early and Middle Pleistocene. The purpose of this was to discuss the meaning of the similarities and differences observed in their histological pattern, as well as to evaluate the degree of covariance with that observed in the permanent dentition of these populations. Our results show that, although there are some similarities in the dental tissue proportions between the deciduous and permanent canines of the study samples, the two dental classes do not provide a similar or comparable pictures of the dental tissue pattern present in the dentition of fossil hominins. Future works on the dental tissue patterns of the anterior and posterior dentition, including deciduous teeth, of fossil samples, may help to shed light on this hypothesis.

Early and Middle Pleistocene hominins from Atapuerca (Spain) show differences in dental developmental patterns

The Bayesian statistical approach considers teeth as forming a developmental module, as opposed to a tooth-by-tooth analysis. This approach has been employed to analyze Upper Pleistocene hominins, including Neandertals and some anatomically modern humans, but never earlier populations. Here, we show its application on five hominins from the TD6.2 level of the Gran Dolina site (Homo antecessor, Early Pleistocene) and the Sima de los Huesos site (Middle Pleistocene) of the Sierra de Atapuerca (Burgos, northern Spain). Our results show an advanced development of the third molars in both populations with respect to modern Homo sapiens. In addition, the Sima de los Huesos hominins differ from H. sapiens and H. antecessor in the relatively advanced development of their second molar. The relative mineralization of I1/M1 in H. antecessor appears to be similar to that of modern humans, as opposed to that of Neandertals, which appear to be unique. These observations, combined with reduced enamel formation times and the advanced development of the third molars, appear to indicate a shorter ontogenetic period in the hominins from Gran Dolina and Sima de los Huesos in comparison to modern human average.

Sexual dimorphism of the enamel and dentine dimensions of the permanent canines of the Middle Pleistocene hominins from Sima de los Huesos (Burgos, Spain)

Sexual dimorphism is an important component of the total variation seen in populations and plays a key role in taxonomic debates. In this study, microtomographic (microcomputed tomography) techniques were applied to a sample of hominin teeth from the Sima de los Huesos site (Spain). Dental tissue proportions of the permanent canines were assessed to characterize the pattern and degree of sexual dimorphism within this population. In addition, the possible similarities and differences with the Homo neanderthalensis remains from Krapina (Croatia) and with a recent modern human sample were evaluated. A combination of classical statistical approaches with more novel techniques allowed us not only to ratify the sex allocation of the individuals previously assigned in the literature but also to estimate the sex of the youngest individuals, which were not assessed in previous studies. Likewise, the sexes of certain extensively worn canines and isolated pieces were estimated. As a result, the sex ratio observed in our dental sample from the Sima de los Huesos population is 5:9 (Nm:Nf). In general terms, both Sima de los Huesos and Krapina dental samples have a degree of sexual dimorphism in their permanent canine tissue proportions that does not surpass that of modern humans. The marked dimorphic root volume of Sima de los Huesos mandibular canines is the exception, which surpasses the modern human mean, although it falls within the 95% confidence interval. Therefore, our results do not support that dental tissue proportions of the European Middle Pleistocene populations were more dimorphic than in modern humans. However, the differences in canine tissue proportions are great enough to allow sex estimation with a high degree of confidence.

Crown tissue proportions and enamel thickness distribution in the Middle Pleistocene hominin molars from Sima de los Huesos (SH) population (Atapuerca, Spain)

Dental enamel thickness, topography, growth and development vary among hominins. In Homo, the thickness of dental enamel in most Pleistocene hominins display variations from thick to hyper-thick, while Neanderthals exhibit proportionally thinner enamel. The origin of the thin trait remains unclear. In this context, the Middle Pleistocene human dental assemblage from Atapuerca-Sima de los Huesos (SH) provides a unique opportunity to trace the evolution of enamel thickness in European hominins. In this study, we aim to test the hypothesis if the SH molar sample approximates the Neanderthal condition for enamel thickness and/or distribution. This study includes 626 molars, both original and comparative data. We analysed the molar inner structural organization of the original collections (n = 124), belonging to SH(n = 72) and modern humans from Spanish origin (n = 52). We compared the SH estimates to those of extinct and extant populations of the genus Homo from African, Asian and European origin (estimates extracted from literature n = 502). The comparative sample included maxillary and mandibular molars belonging to H. erectus, East and North African Homo, European Middle Pleistocene Homo, Neanderthals, and fossil and extant H. sapiens. We used high-resolution images to investigate the endostructural configuration of SH molars (tissue proportions, enamel thickness and distribution). The SH molars exhibit on average thick absolute and relative enamel in 2D and 3D estimates, both in the complete crown and the lateral enamel. This primitive condition is shared with the majority of extinct and extant hominin sample, except for Neanderthals and some isolated specimens. On the contrary, the SH molar enamel distribution maps reveal a distribution pattern similar to the Neanderthal signal (with thicker enamel on the lingual cusps and more peripherally distributed), compared to H. antecessor and modern humans. Due to the phylogenetic position of the SH population, the thick condition in molars could represent the persistence of the plesiomorphic condition in this group. Still, more data is needed on other Early and Middle Pleistocene populations to fully understand the evolutionary meaning of this trait.

Ectopic maxillary third molar in Early Pleistocene Homo antecessor from Atapuerca-Gran Dolina site (Burgos, Spain)

Objectives Here we describe the case of an ectopic maxillary third molar (M3), preventing the eruption of the M2, in the individual H3 of the hominin hypodigm of level TD6.2 of the Early Pleistocene site of Gran Dolina (Sierra de Atapuerca, Spain). Materials and Methods The fossil remains from the TD6.2 level of the Gran Dolina site (about 170 specimens) are assigned to Homo antecessor. Different geochronological methods place these hominins in the oxygen isotopic stage 21, between 0.8 and 0.85 million years ago (Ma). The immature individual H3 is represented by an almost complete midface (ATD6-69), preserving various teeth in situ. We used high-resolution microtomograhy (mCT) to investigate the abnormal position of the left M3, virtually reconstruct M2, and M3 as well as assessing the development stage of these. Finally, we compare this case with extinct and extant populations. Results Based on the identified signs, we suggest that individual H3 suffered from a unilateral impaction of the M2 as a result of the ectopic position of the developing M3. Discussion We conclude that the most likely etiology for the ectopic position of the M3 is the lack of space in the maxilla. We discuss possible contributing factors, such as morphometric aspects of the maxilla and the early mineralization of the M3, to support the M2 impaction. Finally, due to the early age at death of this individual we did not identify any secondary lesion associated with the M2 impaction.