Testing the inhibitory cascade model in the Middle Pleistocene Sima de los Huesos (Sierra de Atapuerca, Spain) hominin sample

The Middle Pleistocene Sima de los Huesos (SH) site has yielded more than 7.500 human fossil remains belonging to a minimum of 29 individuals. Most of these individuals preserve either the complete mandibular molar series or at least the first (M1) and second (M2) molars. The inhibitory cascade mathematical model was proposed by Kavanagh et al. (Nature, 449, 427–433 [2007]) after their experimental studies on the dental development of murine rodent species. The activator–inhibitor mechanism of this model has shown its ability for predicting evolutionary size patterns of mammalian teeth, including hominins. The main aim of this study is to test whether the size molar patterns observed in the SH hominins fit the inhibitory cascade model. With this purpose, we have measured the crown area of all SH molars in photographs, using a planimeter and following techniques used and well contrasted in previous works. Following one of the premises of the inhibitory cascade model, we expect that the central tooth (M2 in our case) of a triplet would have the average size of the two outer teeth. The absolute difference between the observed and the expected values for the M2s ranges from 0.23 to 8.46 mm2 in the SH sample. In terms of percentage, the difference ranges between 0.25% and 10.34%, although in most cases, it is below 5%. The plot of the estimated M3/M1 and M2/M1 size ratios obtained in the SH hominins occupies a small area of the theoretical developmental morphospace obtained for rodent species. In addition, the majority of the values are placed near the theoretical line which defines the relationship predicted by the inhibitory cascade model in these mammals. The values of the slope and intercept of the reduced major regression obtained for the SH individuals do not differ significantly from those obtained for rodent species, thus confirming that the size of the molars of the SH hominins fits the inhibitory cascade model. We discuss these results in terms of dental development. Despite the promising results in the SH sample, we draw the attention to the fact that most Early Pleistocene Homo specimens exhibit a pattern (M1 < M2 > M3), which is outside the expected theoretical morphospace predicted by the inhibitory cascade model. The shift from the M1 < M2 < M3 size relationship observed in early hominins (including H. habilis) to the M1 > M2 > M3 size relationship, which is predominant in modern humans, includes sequences that depart from predictions of the inhibitory cascade model. Additional studies are required to understand these deviations.

Ectopic maxillary third molar in Early Pleistocene Homo antecessor from Atapuerca-Gran Dolina site (Burgos, Spain)

Objectives Here we describe the case of an ectopic maxillary third molar (M3), preventing the eruption of the M2, in the individual H3 of the hominin hypodigm of level TD6.2 of the Early Pleistocene site of Gran Dolina (Sierra de Atapuerca, Spain). Materials and Methods The fossil remains from the TD6.2 level of the Gran Dolina site (about 170 specimens) are assigned to Homo antecessor. Different geochronological methods place these hominins in the oxygen isotopic stage 21, between 0.8 and 0.85 million years ago (Ma). The immature individual H3 is represented by an almost complete midface (ATD6-69), preserving various teeth in situ. We used high-resolution microtomograhy (mCT) to investigate the abnormal position of the left M3, virtually reconstruct M2, and M3 as well as assessing the development stage of these. Finally, we compare this case with extinct and extant populations. Results Based on the identified signs, we suggest that individual H3 suffered from a unilateral impaction of the M2 as a result of the ectopic position of the developing M3. Discussion We conclude that the most likely etiology for the ectopic position of the M3 is the lack of space in the maxilla. We discuss possible contributing factors, such as morphometric aspects of the maxilla and the early mineralization of the M3, to support the M2 impaction. Finally, due to the early age at death of this individual we did not identify any secondary lesion associated with the M2 impaction.

Modern humans sex estimation through dental tissue patterns of maxillary canines

Objectives Dental tissue proportions of human permanent canines is one of only a few sexually dimorphic features that is present in childhood and maintained in adults, offering the opportunity for this to be used in sex determination. This study assesses dental tissue volumes and surface areas of maxillary permanent canines in a sample of known sex to provide new data and to explore the potential of these variables as reliable sexual estimators. Materials and methods The teeth studied here derive from 56 individuals (27 females and 29 males) of known sex and age, and of different geographic origins. The teeth were scanned and three-dimensional (3D) measurements (volumes and surface areas) were obtained. In addition, a discriminant function analysis was applied. Results The results presented here concur with those previously published in relation to both size and dental tissue patterns. Male maxillary canines have a greater dentine component, whereas female enamel is thicker, leading to a difference in dental size in favor of males. Discriminant functions were calculated using these histological variables successfully identifying sex in between 87.5% and 93.75% of the known-sex hold-out sample, with 92.3% correctly assigned when all functions were applied together. Discussion The present study supports that methods for sex determination based on dental tissue measurements can achieve high allocation accuracies, being especially useful in the case of subadults or when no other appropriate method is available.

Contribution of dental tissues to sex determination in modern human populations

Objectives Accurate sex estimation is an essential step for the reconstruction of the biological profile of human remains. Earlier studies have shown that elements of the human permanent dentition are sexually dimorphic. The aims of this study are to determine the degree of sexual dimorphism in the dental tissue volumes and surface areas of mandibular canines and to explore its potential for reliable sex determination. Method The teeth included in this study (n = 69) were selected from anthropological collections from Spain, South Africa and Sudan. In all cases, the sex of the individuals was known. The teeth were scanned and three-dimensional (3D) measurements (volumes and surfaces areas) were obtained. Finally, a dsicriminant function analysis was applied. Results Our results showed that sexual dimorphism in canine size is due to males having greater amounts of dentine, whereas enamel volume does not contribute significantly to overall tooth size dimorphism. Classification accuracy of the multivariable equations tested on slightly worn teeth ranged from 78 to 90.2% for the crossvalidation, and from 71.43 to 84.62% for the hold-out sample validation. When all functions were applied together, the sex was correctly assigned 92.30% of the time. Conclusions Our results suggest that the 3D variables from mandibular canine dental tissues are useful for sex determination as they present a high degree of dimorphism. The results obtained show the importance of 3D dental tissue measurements as a methodology in sex determination, which application should be considered as a supplemental method to others.