Indicators of sexual dimorphism in Homo antecessor permanent canines

One of the main concerns of paleoanthropologists is to make a correct interpretation of the variability observed in the fossil record. However, the current knowledge about sexual dimorphism in the human lineage comes mainly from the study of modern human, Neanderthal and pre-Neanderthal populations, whereas information available about the intrapopulation variability of the groups that preceded these taxa is still ambiguous. In this preliminary study, Homo antecessor dental sample was assessed with the aim of trying to evaluate the degree of variability of their permanent canines` dental tissue proportions. Microtomographic techniques were here employed in order to measure and compare the crown volumes and surface areas of their enamel caps and dentine-pulp complexes. Then, the Pearson`s Coefficient of Variation and the Euclidean Distance were assessed to evaluate of intrapopulation variability of Gran Dolina TD6.2 dental sample. The values obtained were also compared with those of the dental samples from Sima de los Huesos site (Spain), the Neanderthal site of Krapina (Croatia), as well as from a broad forensic collection of known sex. Our results showed a marked intrapopulation variability in the dental tissues measurements of the canines of the individuals H1 and H3 from this site. This variability may be interpreted as an indicator of sexual dimorphism. If this is the case, H1 may be considered as a male individual, whereas H3 would be a female. Future discoveries of new fossils in the level TD6.2 of Gran Dolina site might help to confirm or refute this hypothesis.

Brains, teeth and life histories in hominins: a review

The role of the brain in the somatic development, as well as in the establishment of the different variables of the life history pattern in vertebrates has been largely debated. Moreover, during the last thirty years, dental development has been used as a good proxy to infer different aspects of the life history in hominins, primarily due to the correlation that exists between age at first molar eruption and brain size in the order Primates. We review these questions using what is known about brain growth and maturation, dental development and life history pattern, mainly in Homo sapiens and Pan troglodytes. It has been assumed that the brain represents the pace-maker of our development. However, we consider that our particular phenotype is the result of a hierarchical genetic program modulated by epigenetic and environmental factors. The particular bauplan of any kind of organisms (e.g. primates) may explain the high correlation observed between different variables of its life history pattern, brain size or dental development. However, the correlation of these variables seems to be less reliable when dealing with low-rank taxonomical categories (i.e., species). We suggest that, while there is likely some relationship between the rate of somatic development and tooth development, our brain size and maturation (and, by extension, those of other species of the genus Homo) have derived towards a particular trajectory, with a unique pattern of prenatal and postnatal time and rate of growth and, particularly, with remarkable slow brain maturation. We suggest that extremely slow brain maturation could be a very recent acquisition of the last H. sapiens populations. Furthermore, our review of the literature suggests caution in drawing conclusions about aspects of the life history of the hominins from the information we can obtain from dental development in fossil specimens.